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Abstract Projections of climate change are inherently uncertain, leading to con-
siderable debate over suitable allowances for future changes such as sea-level rise
(an ‘allowance’ is, in this context, the amount by which something, such as the
height of coastal infrastructure, needs to be altered to cope with climate change).
Words such as ‘plausible’ and ‘high-end’ abound, with little objective or statisti-
cally valid support. It is firstly shown that, in cases in which extreme events are
modified by an uncertain change in the average (e.g. flooding caused by a rise
in mean sea level), it is preferable to base future allowances on estimates of the
expected frequency of exceedances rather than on the probability of at least one
exceedance. A simple method of determining a future sea-level rise allowance is
then derived, based on the projected rise in mean sea level and its uncertainty, and
on the variability of present tides and storm surges (‘storm tides’). The method
preserves the expected frequency of flooding events under a given projection of
sea-level rise. It is assumed that the statistics of storm tides relative to mean sea
level are unchanged. The method is demonstrated using the GESLA (Global Ex-
treme Sea-Level Analysis) data set of roughly hourly sea levels, covering 198 sites
over much of the globe. Two possible projections of sea-level rise are assumed for
the 21st century: one based on the Third and Fourth Assessment Reports of the
Intergovernmental Panel on Climate Change and a larger one based on research
since the Fourth Assessment Report.
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1 Introduction

A major effect of climate change is a present and continuing increase in sea level,
caused mainly by thermal expansion of seawater and the addition of water to the
oceans from melted land ice (e.g. Meehl et al 2007, as reported in the Fourth
Assessment Report (AR4) of the Intergovernmental Panel on Climate Change
(IPCC)). The present rate of global-average sea-level rise is about 3.2 mm yr−1

(Church and White 2011). At the time of AR4 in 2007, sea level was projected
to rise at a maximum rate of about 10 mm yr−1 and to a maximum level of
about 0.8 m (relative to 1990) by the last decade of the 21st century, in the
absence of significant mitigation of greenhouse-gas emissions (Meehl et al 2007,
Table 10.7, including ‘scale-up ice sheet discharge’). However, since the AR4, there
has been considerable debate about whether these projections are underestimates
(e.g. Nicholls et al (2011, Fig. 1) and Online Resource, Table (i)), as discussed in
Section 5.2.

Sea-level rise, like the change of many other climate variables, will be expressed
mainly as an increase in the frequency or likelihood (probability) of extreme events,
rather than simply as a steady increase in an otherwise constant state. One of the
most obvious adaptations to sea-level rise is to raise infrastructure by a sufficient
amount so that flooding events occur no more often than they did prior to the
sea-level rise. The selection of such an allowance has often, unfortunately, been
quite subjective and qualitative, involving concepts such as ‘plausible’ or ‘high-
end’ projections.

This paper develops a simple technique for estimating an allowance for sea-
level rise using elementary extreme-value theory. This allowance ensures that the
expected, or average, number of extreme events in a given period is conserved. In
other words, any infrastructure raised by this allowance would experience the same
frequency of extreme events under sea-level rise as it would without the allowance
and without sea-level rise.

Present evidence (Bindoff et al 2007, Woodworth and Blackman 2004) suggests
that the rise in mean sea level is generally the dominant cause of the observed
increase in the frequency of extreme events (i.e. that the statistics of the effect of
storminess on sea level is approximately stationary). It is therefore assumed here
that there is no change in the variability of the extremes (specifically, the scale
parameter of the Gumbel distribution; see Section 4). In other words, the statistics
of storm tides relative to mean sea level are assumed to be unchanged.

The allowance derived from this method depends strongly on the probability
distribution of the rise in mean sea level at some future time. However, once this
distribution has been chosen, the remaining derivation of the allowance is entirely
objective.

Unless otherwise stated, uncertainties are here given as ± one standard devi-
ation (indicated by ‘sd’) or as ± the half-range (indicated by ‘lim’). In the latter
case, the half-range represents true limits, with zero probability outside the indi-
cated range.
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2 Statistics Which Describe the Likelihood of Extremes

Extremes are generally described by exceedance events which are events which
occur when some variable exceeds a given level.

Two statistics are conventionally used to describe the likelihood of extreme
events such as flooding from the ocean. These are the average recurrence interval
or ARI (R), and the exceedance probability (E) for a given period (T ). The ARI
is the average period between extreme events (observed over a long period with
many events), while the exceedance probability is the probability of at least one
exceedance event happening during the period T . Exceedance distributions are
often expressed (as in Section 4) in terms of the cumulative distribution function,
F , where F = 1 − E. F is just the probability that there will be no exceedances
during the prescribed period, T . These statistics are related by (e.g. Pugh 1996):

F = 1− E = exp

(

−
T

R

)

= exp(−N) (1)

where N is the expected, or average, number of exceedances during the pe-
riod T .

Eq. 1 involves the assumption (made throughout this paper) that exceedance
events are independent; their occurrence therefore follows a Poisson distribution.
This requires a further assumption about the relevant time scale of an event. If
multiple closely-spaced events have a single cause (e.g. flooding events caused by
one particular storm), they are generally combined into a single event using a
declustering algorithm.

The occurrence of sea-level extremes, and therefore the ARI and the exceedance
probability, will be modified by sea-level rise, the future of which has considerable
uncertainty. For example, the projected sea-level rise for 2090-2099 relative to
1980-1999, for the A1FI Emission Scenario (which the world is broadly following
at present; Le Quéré et al 2009), is 0.50±0.26 m (5%-95% range, including scaled-
up ice sheet discharge; Meehl et al 2007), the range being larger than the central
value.

Let us first consider a simple case in which there are two possible futures, with
probabilities P1 and P2 (P1 + P2 = 1). If the exceedance probabilities in these
two cases are E1 and E2, respectively, then the overall exceedance probability
(taking into account both possible futures) is just P1E1+P2E2. However a similar
relationship does not hold for the ARI; if the respective ARIs are R1 and R2,
then the ‘overall’ ARI, P1R1 + P2R2, has little meaning and is not useful for
assessing risk. There is, nevertheless, a related variable which may be usefully
combined probabilistically in this way - the expected number of exceedances in a
given period.

If the period is T and the respective ARIs are R1 and R2, then the expected
number of exceedances in each case are N1 = T/R1 and N2 = T/R2, and the
overall expected number of exceedances is P1N1 + P2N2 = T (P1/R1 + P2/R2).

The above can, of course be readily extended to more realistic cases in which
there are more than two futures, so long as each has an estimated probability
of occurrence and the sum of all the probabilities is one. There are therefore two
statistical quantities which can be readily used to estimate an ‘overall’ result under
conditions of uncertainty: the exceedance probability, E, and the expected number
of exceedances, N .
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If the probability distribution of the exceedance probability is given by PE ,
then the overall exceedance probability, Eov , is given by

Eov =

∫

∞

−∞

PEE dE (2)

Similarly, if the probability distribution of the expected number of exceedances
is given by PN , then the overall expected number of exceedances, Nov , is given by

Nov =

∫

∞

−∞

PNN dN (3)

What are the relative merits of these two statistics? For low exceedance proba-
bilities (E ≪ 1), Eq. 1 indicates, using a Taylor series approximation, that E ≈ N
(i.e. the statistics are approximately equivalent) and so the question does not arise.
However, the exceedance probability is the probability of at least one exceedance
event happening during the period T and, as E increases above about 0.6, it
becomes increasingly likely that the number of events will exceed one. If the ex-
ceedance statistic is to be used to estimate risk (i.e. the combination of likelihood
(E) and consequence (e.g. the damage cost of each event)), then knowing only the
probability of one or more events occurring may not be sufficient – an estimate of
the expected number of exceedances, N , is generally more useful.

Section 3 discusses the relationship between the exceedance probability (E)
and the expected number of exceedances (N) and, in particular, the way in which
this relationship is modified by additional uncertainty (yielding Eov and Nov ).

3 The Effect of Uncertainty on a Poisson-Distributed Variable

For exceedance events that are Poisson-distributed, the relationship between E
and N is given in Eq. 1 and plotted in Fig. 1 (solid curve). The solid square indi-
cates the well-known result (e.g. Pugh 2004, p. 181) that, if the expected number
of exceedances in a given period is one, then the exceedance probability is 0.63
(63%). The solid circles (1 and 2) indicate two possible situations (or ‘futures’), as
considered in the simple example of Section 2; these have exceedance probabilities
E1 = 0.1 (10%) and E2 = 0.9 (90%), respectively. As discussed in Section 2, the
overall exceedance probability and expected number of exceedances (taking into
account both possible situations) are P1E1+P2E2 and P1N1+P2N2, respectively,
where P1 and P2 are the respective probabilities of occurrence of situations 1 and
2. The dashed line therefore represents the range of possible exceedance probabil-
ities and expected numbers of exceedances for the overall outcome, for all values
of P1 and P2 (given that P1 + P2 = 1). For example, if P1 = P2 = 0.5, then the
overall values, Eov and Nov , are as shown by the arrow head (‘ov’). The tail of the
arrow indicates the expected number of exceedances for an exceedance probability
of 0.5 (50%), given a Poisson distribution.

The above illustrates the general rule that, if multiple situations are considered,
and if each situation is governed by a different Poisson process, then the resultant
overall values (Eov and Nov ) do not accord with the Poisson relationship (the
continuous curve in Fig. 1). In fact, due to the curvature of the E(N) relationship,
the expected number of exceedances is significantly higher than the value we would
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Fig. 1 Solid curve shows exceedance probability as a function of expected number of ex-
ceedances for a Poisson distribution. Solid square indicates exceedance probability of 0.63
(63%) for the case of one expected exceedance. Solid circles (1 and 2) indicate exceedance
probabilities of 0.1 (10%) and 0.9 (90%), respectively. Dashed line represents range of possible
exceedance probabilities and expected numbers of exceedances for a weighted average of val-
ues indicated by solid circles. Tail of arrow indicates exceedance probability of 0.5 (50%) for
a Poisson distribution and head of arrow (‘ov’) indicates same exceedance probability but for
simple average of values indicated by solid circles.

expect from a Poisson process with the same exceedance probability. In the present
example, the overall expected number of exceedances is 1.20, compared with the
‘Poisson’ value of 0.69. For low exceedance probabilities, such as this, this difference
is really only academic. However, if we take the case of E1 = 0.27 (27%) and
E2 = 0.99 (99%), then (for P1 = P2 = 0.5) the overall expected number of
exceedances is 2.5, compared with 1.0 for a Poisson process with the same overall
exceedance probability (0.63 or 63%). It is clear from Fig. 1 that, as E2 → 1, the
difference between the overall expected number of exceedances and those for a
Poisson process → ∞.

Planners and policymakers have had considerable experience in designing plan-
ning directives and building codes during a period of relatively unchanging climate.
Let us suppose that, on the basis of previous experience, the situation for a par-
ticular item of infrastructure is presently regarded as ‘safe’ if the ARI (R), the
exceedance probability (E) or the expected number of exceedances (N) satisfy
one of the following constraints:

R ≥ Rsafe

E ≤ Esafe for a given period, T

N ≤ Nsafe for a given period, T (4)

where Rsafe , Esafe and Nsafe may be regarded as planning guidelines.
Until recently, the consideration of possible different situations (or ‘futures’)

has not been necessary and so Rsafe , Esafe , Nsafe and T were related by Eq. 1.
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Fig. 2 Solid curve shows exceedance probability as a function of expected number of ex-
ceedances for a Poisson distribution. Solid circle (at Nsafe , Esafe) represents a situation re-
garded as safe under conditions of relatively unchanging climate. Shaded area shows region for
which Nov ≤ Nsafe and Eov ≤ Esafe for situations (described by Nov , Eov in Eqs. 2 and 3)
in which the uncertainty of climate change has been taken into account (requiring that they
must lie to the right of or below the curve). The critical constraint is Nov ≤ Nsafe ; if this is
satisfied, so also is Eov ≤ Esafe (e.g. point A). However, Eov ≤ Esafe does not ensure that
Nov ≤ Nsafe (e.g. point B).

However, future climate change will bring not just change but also its accompa-
nying uncertainty. Any new planning guidelines will therefore have to take Eqs. 2
and 3 into account, yielding estimates of Eov and Nov . Figure 2 indicates that,
for any general future situation where the uncertainty of climate change has been
taken into account, the critical constraint is Nov ≤ Nsafe ; if this is satisfied, so
also is Eov ≤ Esafe (e.g. point A). However, Eov ≤ Esafe does not ensure that
Nov ≤ Nsafe (e.g. point B).

It is therefore concluded that future allowances for climate change extremes
(e.g. related to sea-level rise) should be based on estimates of the expected number
of exceedances rather than on the exceedance probability. Section 4 now describes
the derivation of an allowance for uncertain sea-level rise which conserves the
expected number of exceedances in a given period.

4 Theory

The probability of exceedances above a given level and over a given period is often
well described by a generalised extreme-value distribution (GEV). The simplest of
these, the Gumbel distribution, fits most sea-level extremes quite well (e.g. van den
Brink and Können 2011). The Gumbel distribution may be expressed as (e.g. Coles
2001, p. 47)

F = exp
(

− exp
(

µ− z

λ

))

(5)
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where z is the height, µ is the ‘location parameter’ and λ is the ‘scale parameter’
(an e-folding distance in the vertical). F is the probability that there will be no
exceedances > z during the prescribed period, T .

From Eqs. 1 and 5

N = exp
(

µ− z

λ

)

(6)

µ is therefore the value of z for which N = 1 during the period T .

As noted in Section 1, it is assumed that the scale parameter, λ, does not
change with a rise in sea level.

Given that the scale parameter is a key player in the present work, it is worth
considering the factors which determine its magnitude. Firstly, the scale parameter
relates to extremes and therefore to the variability of the maxima in sea level (over
some prescribed period such as a year), rather than to the total variability in sea
level. Therefore a large tidal range, with only weak modulation (i.e. almost a pure
sinusoid) would have a small scale parameter. Conversely, a small tidal range,
with strong modulation (e.g. a strong neap/spring cycle) would have a large scale
parameter. The situation is further complicated by the character of the storm
surges, so that tidal range is not a good indicator of the magnitude of the scale
parameter. For example, in Australia, the tidal range at Sydney (1.3 m) is over
twice the range at Fremantle (0.6 m). However, the scale parameter at Sydney
(0.06 m) is only half of the scale parameter at Fremantle (0.12 m).

Mean sea level is now raised by an amount ∆z + z′, where ∆z is the central
value of the estimated rise and z′ is a random variable with zero mean and a
distribution function, P (z′), to be chosen below. This effectively increases the
location parameter, µ, by ∆z+ z′. From Eqs. 3 and 6, the expected number (Nov )
of exceedances (> z) during the period T , now becomes

Nov =

∫

∞

−∞

P (z′) exp

(

µ− z +∆z + z′

λ

)

dz′

= N exp

((

∆z + λ ln

(
∫

∞

−∞

P (z′) exp

(

z′

λ

)

dz′
))/

λ

)

(7)

(noting that we again use the subscript ‘ov’ to indicate integration over a range
of possibilities).

The term λ ln(· · ·) in the last part of Eq. 7 represents an additional allowance
arising from the uncertainty in future sea-level rise. It is evaluated for three types
of distribution: a normal distribution, a boxcar (uniform) distribution and a raised
cosine distribution (see Online Resource, Section A). The resulting allowances are
all expressed as simple analytical expressions, involving the Gumbel scale param-
eter, λ, the central value of the estimated rise, ∆z, and its standard deviation,
σ. The boxcar and raised cosine distributions, which have upper and lower limits,
are considered here because there are quite strong physical constraints on sea-level
rise. For example, it is highly unlikely that sea level will fall under global warming
and Pfeffer et al (2008) deduced an upper limit of sea-level rise for the 21st century
of 2.0 m. The raised cosine distribution (which is used later to describe a possible
21st-century sea-level rise projection) is given by:
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P (z′) =
1

W

(

1 + cos

(

2πz′

W

))

for −W/2 < z′ < W/2 otherwise 0 (8)

where W is the full-width of the distribution.

5 Projections of Sea-Level Rise

The sea-level rise allowance described in Section 4 requires an estimate of the
mean sea-level rise, ∆z, and its uncertainty, σ. These estimates may be provided
by combining results from the IPCC Assessment Reports (specifically, the Third
Assessment Report (TAR; Church et al 2001) and the AR4 (Meehl et al 2007)), and
from research conducted since the AR4, as summarised for example by Nicholls
et al (2011). As will be seen, these two sources of information (i.e. TAR/AR4
and post-AR4) lead to two rather distinct ranges and are treated separately in
the following discussion. At present, it is unclear which of the two is the more
appropriate.

It should also be noted that there is considerable disagreement between models
as to the regional variation of future sea-level rise (Meehl et al 2007, Figure 10.32).
The present work uses only projections of global-average sea-level rise; regional
variation therefore represents additional uncertainty.

The projections described here apply only to the component of sea-level rise
that is related to anthropogenic climate change. They do not include any effects of
vertical land movement, such as those associated with glacial isostatic adjustment,
tectonic activity or local land sinkage (e.g. due to groundwater withdrawal). Any
such movement, and its uncertainty, should be incorporated into the projections,
to yield the sea-level rise relative to the land.

5.1 The TAR and AR4 Projections

For each of the six ‘marker’ emission scenarios (A1B, A1T, A1FI, A2, B1 and B2),
the TAR gave the ‘range of all AOGCMs (Atmosphere-Ocean General Circulation
Models) . . . including uncertainty in land-ice changes, permafrost changes and
sediment deposition’ at decadal increments through the 21st century, relative to
1990 (Church et al 2001, Table II.5.1). The ‘range of all AOGCMs’ has been
interpreted to be ±2 standard deviations (Church et al 2001, Box 11.1; Meehl
et al 2007, 10.A.6). On the other hand, the AR4 gave the ‘5 to 95% range (m) of
the rise in sea level’ and included an additional contribution (‘scaled-up ice sheet
discharge’) to account for ‘rapid dynamical changes’ in ice sheets that were not
simulated by continental ice sheet models (Meehl et al 2007). The AR4 results were
only presented as the sea-level rise for 2090-2099 relative to 1980-1999. Both the
TAR and AR4 results apparently relate to the spread of model projections (akin to
the standard deviation) rather than to the uncertainty (akin to the standard error)
of the best estimate of the projections. The uncertainty, σ, used in Section 4 and
in Online Resource, Section A, Eqs. (viii), (ix) and (x), strictly relates to the
standard error. However, for reasons discussed in Online Resource, Section B, the
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uncertainty, σ, is here associated with the standard deviation (rather than the
standard error) of the projections.

In order to obtain time series of model projections through the 21st century
that are compatible with the AR4, Hunter (2010) fitted the time series of TAR pro-
jections through the AR4 projections for 2090-2099. The resultant tables (Hunter
2010, Tables 1 and 2) are similar to Table II.5.1 of the TAR, except that they
relate to the 5 to 95% range, rather than to the ‘range of all AOGCMs’. They are
here referred to as the AR4-adjusted TAR projections. It should be noted that, for
the last decade of the 21st century, these are the AR4 projections.

Therefore, the first set of sea-level rise allowances is based on the A1FI emission
scenario (which the world is broadly following at present; Le Quéré et al 2009) and
the AR4-adjusted TAR projections, as follows:

1. the mean sea-level rise, ∆z, was derived from the average of the 5 and 95%
values, and

2. the uncertainty, σ, was approximated by the standard deviation of the projec-
tions, assuming a normal distribution fitted through the 5 and 95% values.

This is here denoted the IPCC A1FI Projection.

5.2 Post-AR4 Projections

Prior to the publication of the AR4, Rahmstorf et al (2007) compared the projec-
tions of the TAR with observations from 1990 to 2006 and concluded that the ob-
servations were following the ‘model maximum’ projections, which are about 70%
greater than the central value of the projections. Further, the present observed
rate since 1993 (3.2 mm yr−1, Church and White 2011) is about 60% greater than
the central value of sea-level rise from 1990 to 2010 (about 2.0 mm yr−1), derived
from the AR4-adjusted TAR projections (see Section 5.1 and Hunter (2010)). How-
ever, simple comparisons between the projected and observed sea-level rise over
the past two decades should be treated with some caution for two main reasons:

1. The comparison may be confounded by interannual and decadal variability. For
example, Church and White (2011) showed that the satellite altimeter observa-
tions started (in 1993) during a period of relatively low sea level following (and
possibly forced by) the Mt Pinatubo eruption in 1991; allowance for this rel-
ative low in observed sea level reduces the disagreement between observations
and projections for 1990-2010 from 60% to about 45% (with the observations
still being larger than the projections).

2. There is no obvious physical reason why any present proportional relationship
between observations and projections should be maintained until the end of
the century.

Nicholls et al (2011) summarised projections of sea-level rise published since
the AR4 (Online Resource, Table (i) and their Fig. 1). They suggested ‘a pragmatic
range of 0.5-2 m for twenty-first century sea-level rise, assuming a 4◦ C or more rise
in temperature’. This temperature rise (which is for 2090-2099 relative to 1980-
1999), is achieved by the AR4 temperature projections for emission scenarios A1B,
A2 and A1FI. They also concluded that ‘the upper part of this range is considered
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Fig. 3 Probability distributions for global-average rise in mean sea level. Solid curve shows
IPCC A1FI Projection for 1990-2100, based on A1FI emission scenario and AR4-adjusted
TAR projections (normal distribution with ∆z = 0.542 m and σ = 0.168 m). Dashed curve
shows 1.0/1.0 m Projection for the 21st century, based on post-AR4 results (raised cosine with
∆z = 1.0 m and W/2 = 1.0 m).

unlikely to be realized’ (the 2 m upper limit of this range being derived from
Pfeffer et al (2008)). It is also highly unlikely that sea level will fall under global
warming. These considerations are here translated into a 21st century sea-level rise
of 1.0 m ± 1.0 (lim) m, using a raised-cosine probability distribution giving zero
probability outside this range (Eq. 8). The second set of sea-level rise allowances is
provided, based on this projection, which is here denoted the 1.0/1.0 m Projection.

5.3 Summary of Projections

Two sets of allowances are therefore provided for 2100:

1. the IPCC A1FI Projection for 2100 relative to 1990, which is based on the
A1FI emission scenario and the AR4-adjusted TAR projections (Hunter 2010),
giving ∆z = 0.542 m and σ = 0.168 m (normal distribution), and

2. the 1.0/1.0 m Projection for the 21st century, which is based on post-AR4
results (Nicholls et al 2011), giving ∆z = 1.0 m and W/2 = 1.0 m (raised cosine
distribution, Eq. 8). The standard deviation of this projection is 0.362 m (see
Online Resource, Section A), so that the 1.0/1.0 m Projection is roughly twice
as large in both mean and standard deviation as the IPCC A1FI Projection.

These probability distributions are shown in Fig. 3. Given the present un-
certainties in the processes which determine sea-level rise, it is difficult to assign
meaningful weights to these two projections. However, it should be noted from Sec-
tion 5.2 that the present observations of sea-level rise lie roughly mid-way between
the two projections.
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6 Application of the Method

6.1 Introduction

The scale parameter (λ) was estimated from the GESLA (Global Extreme Sea-
Level Analysis) sea-level database (see Menéndez and Woodworth 2010) which
has been collected through a collaborative activity of the Antarctic Climate &
Ecosystems Cooperative Research Centre, Australia, and the National Oceanog-
raphy Centre Liverpool (NOCL), UK. The data covers a large portion of the world
and is sampled at least hourly (except where there are data gaps). The database
was downloaded from NOCL on 26 October 2010 and contains 675 files. However,
many of these files are near-duplicates provided by different agencies. Many are
also as short as one or two years and are therefore not suitable for the analysis of
extremes. Initial data processing was therefore performed as described in Online
Resource, Section C.

Prior to extremes analysis, the data were ‘binned’, so as to produce files with
a minimum sampling interval of one hour, and detrended. Annual maxima were
estimated using a declustering algorithm such that any extreme events closer than
3 days were counted as a single event, and any gaps in time were removed from
the record. These annual maxima were then fitted to a Gumbel distribution using
the ismev package (Coles 2001, p. 48) implemented in the statistical language R
(R Development Core Team 2008). This yielded the scale parameter (λ) for each
of the 198 records. It is assumed that λ does not change in time.

The results are here presented in three different ways. Firstly, the scale param-
eter indicates the way in which the frequency of extreme events changes for a given
rise in mean sea level. From Eq. 6, a rise of mean sea level, δz, (which effectively
increases the location parameter, µ, by δz) increases the expected number of ex-
ceedances, N , by a factor exp(δz/λ). This factor is shown (using the left-hand key
in the figures) for a rise in mean sea level of 0.5 metres in Fig. 4 (for the world)
and in Online Resource, Fig. (i) (for Australia).

The other, and closely related, way of presenting the results is in terms of the
sea-level rise allowances for a normal uncertainty distribution (Online Resource,
Section A, Eq. (viii)) and for a raised-cosine uncertainty distribution (Online Re-
source, Section A, Eq. (x)). Since all three ways of presenting the results depend
spatially only on the scale parameter, λ, they are here plotted in the same figures,
but with different keys (the allowances being shown by the middle and right-hand
keys).

The results are also summarised for a number of specific locations in Online
Resource, Table (ii).

6.2 Multiplying Factor for 0.5 m Sea-Level Rise

Fig. 4 shows significant global variability of the Gumbel scale parameter, and
hence in the increase in frequency of flooding events for a given sea-level rise
(left-hand key). The largest values of this multiplying factor are in the southern
Caribbean Sea (Cristóbal and Cartagena) while the smallest lie along the Pacific
coast of Alaska, Canada and the northwest USA; in the mid-east coast of the
USA; and around the northwest European shelf and the Baltic. The large values
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which conserves frequency of flooding events for the IPCC A1FI Projection based on A1FI
emission scenario and AR4-adjusted TAR projections (normal distribution with ∆z = 0.542 m
and σ = 0.168 m); key is central column of dots in the bottom left-hand corner. (c) Sea-level
rise allowance (metres) for 21st century which conserves frequency of flooding events for the
1.0/1.0 m Projection, based on post-AR4 results (raised cosine distribution with ∆z = 1.0 m
and W/2 = 1.0 m); key is right-hand column of dots in the bottom left-hand corner.

of multiplying factor coincide with small values of the scale parameter and vice
versa.

For the world, the reciprocal of the scale parameter and its spatial variation
are 10.2 ± 4.6 (sd) m−1. The ± one standard deviation range yields a range of
multiplying factor for 0.5 m sea-level rise of 16 to 1600.

Online Resource, Fig. (i), shows the same data, but restricted to the Australian
continent. For Australia, the reciprocal of the scale parameter and its spatial vari-
ation are 9.8 ± 2.8 (sd) m−1. The ± one standard deviation range yields a range
of multiplying factors for 0.5 m sea-level rise of 33 to 540.

6.3 IPCC A1FI Projection

These results cover the period 1990-2100, and are based on the A1FI emission
scenario and the AR4-adjusted TAR projections (normal probability distribution,
with ∆z = 0.542 m and σ = 0.168 m). The sea-level rise allowance is shown (using
the central key in the figures) in Fig. 4 (for the world) and in Online Resource,
Fig. (i) (for Australia).

For the world, the sea-level rise allowance and its spatial variation are 0.686±
0.064 (sd) m. The average allowance represents a 26% increase over the mean
sea-level rise, 0.542 m.

For Australia, the sea-level rise allowance and its spatial variation are 0.681±
0.040 (sd) m. The average allowance again represents a 26% increase over the mean
sea-level rise, 0.542 m.



Simple technique for estimating allowance for uncertain sea-level rise 13

6.4 1.0/1.0 m Projection

These results cover the 21st century and are based on post-AR4 results (raised-
cosine probability distribution, with ∆z = 1.0 m and W/2 = 1.0 m). The sea-level
rise allowance is shown (using the right-hand key in the figures) in Fig. 4 (for the
world) and in Online Resource, Fig. (i) (for Australia).

For the world, the sea-level rise allowance and its spatial variation are 1.440±
0.105 (sd) m. The average allowance represents a 44% increase over the mean
sea-level rise of 1.0 m.

For Australia, the sea-level rise allowance and its spatial variation are 1.444±
0.073 (sd) m. The average allowance again represents a 44% increase over the mean
sea-level rise of 1.0 m.

7 Summary

Climate change requires that designers, planners and policymakers make suitable
allowances for future conditions. On the coast, new infrastructure needs to be built
higher, and planning schemes and policies need to be adapted to account for the
raised sea level. It was shown in Section 3 that, in cases in which extreme flooding
events are modified by an uncertain change in mean sea level, it is preferable to base
future allowances upon estimates of the expected number of exceedances in a given
period rather than on the exceedance probability. An allowance based on exceedance
probability would tend, in cases where the exceedance probability is relatively high
(say, > 0.5), to significantly underestimate the number of exceedances.

In Section 4, a simple relationship was developed which defines a sea-level rise
allowance which conserves the expected number of exceedances under conditions
of uncertain sea-level rise. This allowance depends only on the projected rise in
mean sea level and its uncertainty, and on the scale parameter of a Gumbel distri-
bution fitted to the cumulative distribution function (it is assumed that the scale
parameter does not change with a rise in sea level). An attractive feature of this
allowance is that it does not require that the expected number of exceedances be
prescribed; it is independent of the chosen level of precaution.

This allowance is always greater than the mean projection of sea-level rise,
∆z, because the Gumbel distribution (N = exp((µ− z)/λ)) has a positive second
derivative (N/(λ2)) with respect to z (as is also the case with the more general
GEV distribution when fitted to observed storm tides). If, instead, the distribution
had a zero second derivative (i.e. withN varying linearly with z) then the allowance
would be exactly ∆z for any uncertainty distribution, P .

The technique has been demonstrated using a near-global database of sea-level
records, and two possible projections of sea-level rise for the 21st century: one
based on the TAR and AR4 of the IPCC (the IPCC A1FI Projection), and the
other based on research since the AR4 (the 1.0/1.0 m Projection). The 1.0/1.0 m
Projection is about twice as large, both in mean and standard deviation, as the
IPCC A1FI Projection.

The global variation of the Gumbel scale parameter is illustrated by showing
the expected increase in the number of flooding events for a 0.5 m sea-level rise
(the world: Fig. 4 and Online Resource, Table (ii); and Australia: Online Resource,
Fig. (i)). This multiplying factor covers a typical range of 16 to 1600.
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The sea-level rise allowance (Fig. 4; Online Resource, Fig. (i) and Table (ii))
also shows a significant spatial variation (due to changes in the Gumbel scale
parameter), even though the projections of sea-level rise and its uncertainty are
assumed constant. The IPCC A1FI Projection yields allowances for 1990-2100 of
0.686±0.064 (sd) m, while the 1.0/1.0 m Projection yields allowances for the 21st
century of 1.440± 0.105 (sd) m (covering the near-global data set).

In conclusion, allowances for future sea-level rise need to account for both the
statistics of the storm tide and the statistics of the sea-level rise projections.
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A Derivation of Allowances

Eq. 7 of main paper is:

Nov =
∫

∞

−∞

P (z′) exp

(

µ− z +∆z + z′

λ

)

dz′

= N exp

((

∆z + λ ln

(

∫

∞

−∞

P (z′) exp

(

z′

λ

)

dz′
))/

λ

)

(i)

which is here evaluated for three different probability distributions, P (z′):

Normal Distribution:

If P (z′) is a normal distribution of zero mean and standard deviation, σ, then

P (z′) =
1

σ
√
2π

exp

(

−
(z′)2

2σ2

)

(ii)

and Eq. (i) becomes

Nov = N exp

((

∆z +
σ2

2λ

)/

λ

)

(iii)

in which z in the original Gumbel distribution (N in Eq. 6 in main paper) has been replaced
by z −∆z − σ2/(2λ); the distribution has been shifted vertically by ∆z + σ2/(2λ).

Boxcar Distribution:

If, P (z′) is a boxcar (uniform) distribution of zero mean and full-width, W (and therefore
standard deviation, σ = W/(2

√
3)), then
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P (z′) =
1

W
for −W/2 < z′ < W/2 otherwise 0 (iv)

and Eq. (i) becomes
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σ
√
3

λ
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)

(v)

in which z in the original Gumbel distribution (N in Eq. 6 in main paper) has been replaced
by z −∆z − λ ln(· · ·); the distribution has been shifted vertically by ∆z + λ ln(· · ·).

Raised Cosine Distribution:

Finally, if P (z′) is a raised cosine distribution of zero mean and full-width, W (and therefore

standard deviation, σ = (W/2)
√

1/3− 2/(π2) = W/(2K) where K = 1/
√

1/3− 2/(π2) ),
then

P (z′) =
1

W

(

1 + cos

(

2πz′

W

))

for −W/2 < z′ < W/2 otherwise 0 (vi)

and Eq. (i) becomes

Nov = N exp
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∆z + λ ln
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W
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(

W

2λ

)

(

(2πλ/W )2

1 + (2πλ/W )2
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λ

)

= N exp
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∆z + λ ln

(

λ

Kσ
sinh

(

Kσ

λ

)

(

(πλ/σ)2

K2 + (πλ/σ)2

)))/

λ

)

(vii)

in which z in the original Gumbel distribution (N in Eq. 6 in main paper) has been replaced
by z −∆z − λ ln(· · ·); the distribution has been shifted vertically by ∆z + λ ln(· · ·).

Summary:

Therefore, the appropriate allowances (Zn, Zb and Zr, for normal, boxcar and raised cosine
distributions, respectively) for uncertain sea-level rise, which maintain the same expected
number of flooding events in a given period, are
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Zn = ∆z +
σ2

2λ
for a normal distribution, (viii)

Zb = ∆z + λ ln
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W
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)
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3
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(

σ
√
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for a boxcar distribution, and (ix)

Zr = ∆z + λ ln

(

2λ

W
sinh

(

W

2λ

)

(

(2πλ/W )2

1 + (2πλ/W )2

))

= ∆z + λ ln

(

λ

Kσ
sinh

(

Kσ

λ

)

(

(πλ/σ)2

K2 + (πλ/σ)2

))

for a raised cosine distribution (x)

It may be shown that Zn ≥ Zb and Zn ≥ Zr for all σ/λ. A conservative allowance for
sea-level rise is therefore Zn (Eq. (viii)). However, the raised cosine distribution (which
yields the allowance given by Eq. (x)) is probably the more appropriate, given that there are
physical constraints (and hence probable limits) on the rate of future sea-level rise (see
Section 5.2 of main paper).

B The Uncertainty of the Projections

The derivation of the standard error of the best estimate of the projections from the results
of the TAR (Third Assessment Report of the Intergovernmental Panel on Climate Change
or IPCC) and AR4 (Fourth Assessment Report of the IPCC) is not straightforward. If the
projections from individual models were independent, then it would only be necessary to
estimate the number of degrees of freedom, n, and to calculate the standard error, σ, from
the standard deviation, s, from

σ2 =
s2

n
(xi)

The AR4 projections were based on 19 AOGCMs (Atmosphere-Ocean General Circulation
Models), which were run on emission scenarios B1, A1B and A2. The remaining scenarios
were modelled using the MAGICC (Model for the Assessment of Greenhouse-gas Induced

3



Climate Change) simple climate model (e.g. Meinshausen et al 2011), using empirical
time-dependent ratios between pairs of scenarios (one of which was modelled using
AOGCMs). It is tempting to assume that the models are independent and to associate the
number of degrees of freedom, n, with the number of models used in the preparation of the
AR4 projections (of order 20). However, Masson and Knutti (2011) performed a hierarchical
clustering of the CMIP3 (phase 3 of the Coupled Model Intercomparison Project; the
models reported in AR4) climate models and concluded that, due to widespread sharing of
history, algorithms and components between models, ‘the number of structurally different
models is small’, indicating that the actual number of degrees of freedom is significantly
smaller than 20. Pennell and Reichler (2011) statistically analysed the results of 24 CMIP3
models and concluded that the effective number of models was only about 8. Furthermore,
due to the strong interdependence of the models, it is likely that important aspects of the
physics is either missing or wrong in all models, giving a bias which cannot be deduced from
the scatter of model results, and which represents an additional uncertainty. Clear examples
of this are the treatment of glaciers, ice caps and ice sheets (for which there is only one
series of models contributing to the AR4 results) and the modelling of sulfate aerosols (a
number of models sharing common observational data). Due to these considerations, the
uncertainty, σ, is here associated with the standard deviation (rather than the standard
error) of the projections.

C Initial Processing of the GESLA Sea-Level

Database

The GESLA (Global Extreme Sea-Level Analysis) dataset was initially processed as follows:

1. only files which are at least 30 years in length (defined by the number of months
containing at least some data, divided by 12) were selected,

2. non-physical outliers (identified as outliers which did not have any obvious cause, such
as a tsunami or a tropical cyclone) and datum shifts (identified by a clear vertical
offset, often bracketing a significant data gap) were addressed, either by removal or
adjustment of data,

3. known tsunamis were removed,

4. where records were duplicated in separate files, the one which appeared most free of
errors was selected, and

5. co-located data covering different time periods was joined, with appropriate
adjustment for any datum shift.

This resulted in 198 records, of which 166 were unchanged from the original GESLA files, 28
were subject to some modification and 4 were the result of joining records. These records
contain both tides and storm surges.
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Figure (i): Results of Australian analysis, indicated by dot diameter. (a) Factor by which
frequency of flooding events will increase with a rise in sea level of 0.5 metres (key is left-
hand column of dots in the bottom left-hand corner). (b) Sea-level rise allowance (metres)
for 1990-2100 which conserves frequency of flooding events for the IPCC A1FI Projection
based on A1FI emission scenario and AR4-adjusted TAR projections (normal distribution
with ∆z = 0.542 m and σ = 0.168 m); key is central column of dots in the bottom left-
hand corner. (c) Sea-level rise allowance (metres) for 21st century which conserves frequency
of flooding events for the 1.0/1.0 m Projection, based on post-AR4 results (raised cosine
distribution with ∆z = 1.0 m and W/2 = 1.0 m); key is right-hand column of dots in the
bottom left-hand corner.
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Table (i): Range of global sea-level rise from post-AR4 research (after Nicholls et al 2011).
aHigher rates are possible for shorter periods. bFor the twenty-first century. cFor the best
palaeo-temperature record.

Sea-level Rise Methodological approach Source
(m century−1)

0.5-1.4 semi-empirical projectionb Rahmstorf 2007
0.8-2.4a palaeo-climate analogue Rohling et al 2008
0.55-1.10 synthesisb Vellinga et al 2009
0.8-2.0 physical-constraint analysisb Pfeffer et al 2008
0.56-0.92a palaeo-climate analogue Kopp et al 2009
0.75-1.90 semi-empirical projectionb Vermeer and Rahmstorf 2009
0.72-1.60c semi-empirical projectionb Grinsted et al 2010

Table (ii): Summary of analyses for specific locations. aLarge values such as this indicate that
any locations which have been flooded in the past will be flooded on a daily basis with 0.5 m
of sea-level rise (the ranges of sea-level variation at Cristóbal and Rikitea are only 0.6-0.9 m).

Location Increase in Sea-level rise Sea-level rise
frequency of flooding allowance, 1990- allowance, twenty-
events for sea-level 2100, IPCC A1FI first century, 1.0/
rise of 0.5 m Projection (m) 1.0 m Projection (m)

Antofagasta (Chile) 9,000 0.800 1.608
Canary Islands (Spain) 571 0.722 1.521
Cape Town (South Africa) 12,600 0.809 1.616
Cristóbal (Panama) 465,000a 0.911 1.686
Fremantle (Australia) 61.2 0.659 1.409
Furuögrund (Sweden) 13.6 0.616 1.297
Honningsv̊ag (Norway) 74.6 0.664 1.421
Honolulu (USA) 6,010 0.788 1.597
Key West (USA) 5,970 0.788 1.597
Kwajalein (Marshall Islands) 15,100 0.814 1.621
La Coruña (Spain) 181 0.689 1.470
Nagasaki (Japan) 1,700 0.753 1.560
New York (USA) 22.3 0.630 1.338
Oslo (Norway) 18.0 0.624 1.321
Rikitea (French Polynesia) 147,000a 0.879 1.667
Rio de Janeiro (Brazil) 65.1 0.661 1.413
San Diego (USA) 3,160 0.770 1.579
Seattle (USA) 117 0.677 1.447
Sheerness (UK) 35.2 0.643 1.372
Sydney (Australia) 2,250 0.761 1.569
Trieste (Italy) 84.2 0.668 1.428
Wellington (New Zealand) 2,910 0.768 1.577
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